Preparation of a Graphite-like Structured Polymer from 1 -Phenylpenta-1,3-diyn-5-ol

Heung Jae Lee and Sang Chul Shim*

Department of Chemistry, Korea Advanced Institute of Science and Technology, 373- 1 Kusong-Dong, Yusong-Ku, Taejon, 305-701, Korea

Poly(1-phenylpenta-1,3-diyn-5-ol) (PPDO), prepared by NbCl₅/(Bun)₄Sn catalysed metathesis of PDO, is converted into a graphite-like structure with a high conductivity in the absence **of** dopants by heat treatment at 800°C under vacuum.

Conductive or semi-conductive organic polymers such as poly(acetylene) derivatives have received much recent attention.1-4 However, doped conductive polymers are not known to be very stable in air. Some synthetic graphites are known to be stable in air and have a high conductivity without dopants.⁵⁻⁹ Calculations predicted that graphite-subunits possess a low band gap and offer distinct electronic advantages over linear π -systems,^{10,11} stimulating an interest in the synthesis of polymers having a graphite-like structure.

In order to prepare such a graphite-like structured polymer, poly(**l-phenylpenta-l,3-diyn-5-01)** (PPDO) **2** was prepared as a possible precursor by the metathesis polymerization of **l-phenylpenta-l,3-diyn-5-01** (PDO)? **1** (Scheme **1).** Thus-prepared PPDO was heat treated at 800°C for 30 min under vacuum to obtain the final product; a graphite-like structured polymer formed probably through cyclization and condensation reactions. **A** typical polymerization procedure of PDO **is**

Scheme 1 *Reagents and conditions:* **i**, NbCl₅ or TaCl₅, cocatalyst: Et₃SiH, Buⁿ₄Sn, Ph₄Sn, toluene, 80°C, 2 days; ii, >800°C, under **vacuum**

t **PDO 1 was prepared by the Chodkiewicz and Cadiot Coupling12 of phenylacetylene and 1-bromopropynyl alcohol:¹³ ¹H NMR (CDCl₃)** δ **2.14 (2H, s), 4.39 (1H, s), 7.2–7.5 (5H, m); ¹³C NMR (CDCl₃) 6 51.51,70.23,73.16,78.43,80.56,121.36,128.36,129.28,132.53 MS** *mlz* **156 (M+).**

Table **1** The effects of the substituents on the polymerization of **R-z-E-R'**

R	\mathbf{R}^{\prime}	Polymeriz- ation yield $(%)^a$	$M_{\rm w}$	Colour	λ_{max}/n m
Ph $MeOC6H4 -CH2OH$	-CH ₂ OH	82 76	3200 ^b 5300b	Dark-brown 446.5d Dark-brown $451d$	
Ph $-CH2OH$	$-C(Me2)OH$ $-CH2OH$	43 88	2065 ^b ?c	Brown Dark-yellow 365e	449d

a NbCl₅ and Buⁿ₄Sn catalysts used. *b* Determined by GPC method in THF. ϵ Not determined by GPC method in DMF. d In THF. ϵ In DMF.

Fig. 1 TR spectra of *(a)* PDO; (b) PPDO; (c) heat-treated PPDO under 200 "C; *(d)* under 330 "C

mmol) and Bu_n^4Sn (0.12 ml, 2 mmol) under nitrogen atmosphere was stirred at 80 °C for 30 min and a toluene (50 ml) solution of PDO (800 mg, 5 mmol) was added with the continuous stirring at 80°C for 2 days. Tetrahydrofuran (THF) was added to the mixture, and a small amount of insoluble inorganic materials were removed by filtration. After the evaporation of solvents, PPDO (656 mg, 82%) was precipitated by adding hexane. The results of polymerization of PDO and several disubstituted buta-1,3-diynes are shown in Table 1.

The PPDO and heat-treated PPDO were analysed by the IR, Raman, CPMAS 13C NMR and X-ray diffraction spectroscopic methods. Important informations on the structure of PPDO and heat-treated PPDO at 200 and 330°C were obtained from the IR spectra as shown in Fig. 1. The following vibrations were of particular importance when comparing the spectra of monomer [Fig. $1(a)$] and polymer [Fig. $1(b)$]. *(i)* The stretching vibration of the triple bond in monomer and PPDO was observed near 2200 cm-1. *(ii)* The stretching vibration of the double bond in PPDO near 1600 cm^{-1} . Interestingly, when the heat-treatment temperature was raised, the stretching vibrations of the triple bond (2200 cm $^{-1}$) and the C-0 bond (1050 cm-1) disappeared. The two strong bands between $650-760$ cm⁻¹ in the spectra [Fig. 1(c) and $l(d)$] were assigned to the C-H out-of-plane vibrations of monosubstituted phenyl ring which were also observed in the spectrum of the monomer [Fig. $1(a)$], suggesting that the partial structure of PPDO contains monosubstituted phenyl moiety that remains intact after the thermal treatment at 330 "C .14

Raman spectroscopy provided important information on a graphite-like structure.^{15,16} The laser Raman spectrum of the heat-treated PPDO at 800°C shows two peaks around 1350

Fig. 2 Solid-state 13C NMR CPMAS spectra of *(a)* PPDO; (b) heat-treated PPDO (at 800 "C)

Fig. 3 Powder X-ray diffraction pattern for PPD pyrolysed at 800 "C

 cm^{-1} (disorder-induced line) and 1580 cm⁻¹ (Raman allowed graphite-like E_{2g} mode). The results of the IR and Raman spectral analysis indicated that all the oxyen atoms and some of the hydrogen atoms were released during the heat treatment to give graphite-like structures having defects.

Fig, **2** shows the CPMAS 13C NMR spectra of PPDO and heat-treated PPDO. The peaks at δ 110-140 [Fig. 2(a)] correspond to the sp2 carbons of the polymer backbone and the phenyl group of the side chains, while those at δ 80-90 are the sp carbons of the side chains in PPDO, and those at 6 50-60 are due to the hydroxy methyl carbons of the side chains. In the spectrum of heat-treated PPDO at 800 *"C* [Fig. $2(b)$] the peaks at δ 80–90 and δ 50–60 have disappeared. The broad peaks of olefinic carbons in the 13C NMR spectra suggested an irregularity in the structure of imperfect graphite-like products.

Fig. 3 shows the powder X-ray diffraction pattern (with Cu-K α radiation) of the heat-treated PPDO at 800 °C. The interlayer distance $(d_c = 3.37 \text{ Å})$ is derived from the peaks around $2\theta = 21-28^{\circ}$, which may be considered as the (002) band, in reference to the (002) peak **of** a graphite.17 The results indicated that the heat-treated PPDO at 800°C has quasi-crystalline forms ranging from near amorphous to the crystalline graphite-like state.

PPDO is an insulator, but its thermal annealed product gave some conductivity. The conductivity change of pelletized PPDO and heat-treated PPDO is shown in Table 2. When PPDO is thermally annealed at 200 and 300°C for 30 min under N_2 atmosphere, it became a semiconductor (5.3 \times 10^{-8} -1.5 \times 10⁻⁶ S cm⁻¹) without appreciable changes in the dimension or appearance, except that the original brown powder become black lustre. The reason for this remains unclear, but it may be due to π -conjugation enlargement of the main chain. This increase in the electrical conductivity from 10^{-6} to 10^{-1} S cm⁻¹ by the heat-treatment at 800 °C is supportive of the formation of a graphite-like structure. But the resulting electrical conductivities are not of metallic

Table **2** Conductivity of PPDO and heat-treated PPDO

T °C	Iodine doping	Form	$S_{\rm max}/cm$
Room temp.	Doped	Pellet	1.9×10^{-4}
200a,b	Undoped	Pellet	5.3×10^{-8}
	Doped	Pellet	9.0×10^{-5}
330a, b	Undoped	Pellet	1.5×10^{-6}
	Doped	Pellet	7.3×10^{-4}
800 a, c	Undoped	Pellet	3.2×10^{-1}

a Heat treatment for 30 min. *b* Under N₂. *c* Under vacuum.

nature. This is because the heat-treated PPDO at 800 "C has a condensed cross-linked aromatic rings with defects.

This investigation was supported by the Organic Chemistry Research Center-Korea Science and Engineering Foundation and the Korea Science and Engineering Foundation.

Received, 16th April 1993; Corn. 3102202A

References

1 N. Basescu, **2-X.** Lin, D. Moses, A. J. Heeger, H. Naarmann and N. Theophilou, *Nature,* **1987,327, 403.**

- 2 J. M. Pochan, D. F. Pochan, H. Rommelmann and H. W. Gibson, *Macromolecules,* **1981, 14, 110.**
- **3** C. B. Gorman, E. J. Ginsburg, M. J. Sailor, J. **S.** Moore, N. S. Lewis and R. H. Grubbs, *Synth. Met.,* **1991,41, 1033.**
- **4** *Proc. Znt. Conf. Sci. and Tech. Synth. Met.,* Tubingen, *Synth. Met.,* **1991, 41-43.**
- *5* K. Tanaka, K. Ohzeki, *S.* NankaiandT. Yamabe,J. *Phys. Chem. Solids,* **1983,44, 1069.**
- ⁶*S.* Kivelson and 0. L. Chapman, *Phys. Rev.,* **1983, B28, 7236.**
- 7 N. Kobayashi, M. Nakada, E. Tsuchida, H. Matsuda, H. Nakanishi and M. Kato, *J. Polym. Sci., Polym. Lett.,* **1986,** *24,* **215.**
- **8** N. Kobayashi, M. Nakada, H. Ohno, E. Tsuchida, H. Matsuda, H. Nakanishi and M. Kato, *New Polym. Mater.,* **1987, 1, 3.**
- **9** M. Ozaki, **Y.** Ikeda and I. Nahoya, *Synth. Met.,* **1987,18,485.**
- 10 J. **L.** Bredas and R. H. Baughman,J. *Chem. Phys.,* **1985,1316,83.**
- **11** A. K. Bakhshi and J. Ladik, *Synth. Met.,* **1989,30, 115.**
- **12** L. Brandsma, *Preparative Acetylenic Chemistry,* Elsevier, Amsterdam, **1988,** ch. **10,** p. **212.**
- **13** S. **I.** Miller, G. R. Ziegler and R. Wieleseck, *Org. Synth.,* **1973,5, 921.**
- **14** F. R. Dollish, W. G. Fately and F. F. Bentley, *Characteristic* Raman Frequencies of Organic Compounds, Wiley, New York, **1974,** ch. **13,** p. **163.**
- **15** F. Tuinstra and J. L. Koenig, *J. Chem. Phys.,* **1970, 53, 1126.**
- **16** F. Tuinstra and J. L. Koenig, *J. Compus. Mater.,* **1970, 4, 482.**
- **17 J.** C. Bokros, in *Chemistry and* Physics *of Carbon,* ed. P. L. Walker, **1969,** vol. **5,** p. **1.**